Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats

نویسندگان

  • JINGLONG HUANG
  • DONGMING WANG
  • JINBIN ZHENG
  • XIANSHENG HUANG
  • HONG JIN
چکیده

Hydrogen sulfide (H2S) has been recently found to be an endogenous signaling gasotransmitter. Cardiac hypertrophy often develops in the course of heart failure. It is unknown whether or not endogenous H2S protects cardiac hypertrophy. This study was conducted to examine the effects of H2S on cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation and to explore its mechanisms. Male Sprague-Dawley rats were randomly divided into five groups: normal, sham, abdominal aortic coarctation (AAC), AAC treated with enalapril and AAC treated with H2S. One week after surgery, enalapril and sodium hydrosulfide (NaHS)-treated rats were fed for 28 consecutive days and sacrificed. After that, the left ventricle mass index (LVMI), cardiomyocyte size and areas, collagen volume fraction (CVF) of the rats were measured. In the AAC rats, the LVMI, the cardiomyocyte size and areas, and the CVF were all markedly increased while in the H2S groups they were significantly reduced. H2S decreased the levels of Ang-II in the heart, but not in plasma. In addition, H2S also improved the expression of connexin 43 (Cx43). Our results suggest that H2S can significantly suppress cardiac hypertrophy and fibrosis induced by overloaded pressure, possibly by inhibiting the activity of intracardiac Ang-II and by modifying expression of Cx43.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat

Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...

متن کامل

The Possible Role of TNF-alpha in Physiological and Pathophysiological Cardiac Hypertrophy in Rats

Pathological cardiac hypertrophy was produced by partial abdominal aortic constriction (PAAC) for 4 wk, while physiological cardiac hypertrophy was produced by chronic swimming training (CST) for 8 wk in rats. Pentoxifylline (30 mg/kg, 300 mg/kg i.p., day-1) treatment was started three days before PAAC and CST and it was continued for 4 wk in PAAC and 8 wk in CST experimental model. The left ve...

متن کامل

Dynamic changes of hemodynamic parameters and cardiac transcription of sirtuins in adaptive and mal-adaptive phases of pressure overload-induced hypertrophy in rats

Introduction: The aim of the study was to investigate the structural and hemodynamic changes as well as cardiac transcriptional profile of the key regulatory proteins, sirtuins family (SIRT1-7), in adaptive and mal-adaptive phases of left ventricular hypertrophy (LVH). Methods: LVH was induced in male Wistar rats (190±20g) by abdominal aortic banding. The third and sixteenth weeks post-surgery ...

متن کامل

Moderate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway and oxidative stress status in Wistar rats

Objective(s): This study aimed to investigate the effect of aerobic training on serum levels of Klotho, cardiac tissue levels of H2O2 and phosphorylation of ERK1/2 and P38 as well as left ventricular internal diameter (LVID), the left ventricle wall thickness (LVWT) and fibrosis in middle-aged rats. Materials and Methods: Forty wistar rats, including young rats (n=10, 4 month-old) and middle-ag...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012